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Abstract. A Green function technique is used to study the electron-phonon interactionin the
Hubbard model. The Coulomb interaction constant is renormalised owing to the electron—
phonon interaction; this renormalisation always produces an increase in the critical tem-
perature T,. The dependence of the electronic damping on the ratio U/W (Coulomb inter-
action per band width) and on the band occupation n for different temperatures is discussed.
The damping y(T, U/W) shows different behaviours for U = constant and W = constant.

1. Introduction

The Hubbard [1] model is widely used for an approximate description of correlation
effects and their influence on the electrical and magnetic properties of narrow-band
semiconductors and of some transition-metal compounds [2]. Recently the high-T,
superconductors were examined using the Hubbard model [3-6]. The magnetic and
thermodynamic properties (magnetic phase diagram, ground state energy, specific heat,
magnetic susceptibility, etc) of Hubbard systems in one, two and three dimensions have
been theoretically investigated by many researchers [7-12]. The damping, however, has
not been so intensively studied. This model, although simple in form, is not easy to
handle mathematically. No exact solutions exist for the finite-temperature properties of
the Hubbard model. Several approximation theories for the three-dimensional finite-
temperature magnetism employing the functional-integral method within the adiabatic
approximation [13, 14] which interpolate between the weak- and strong-interaction
limits have been proposed in the last few years.

Quite recently, novel computational methods have been proposed to obtain the
exact results for three-dimensional systems. In [15] a method was developed to treat
exactly a fairly large cluster of the Hubbard model, combining the Monte Carlo (MC)
method with a discrete Hubbard-Stratanovich transformation. The quantum MC simu-
lation was performed fora4 X 4 x 4 simple-cubiclattice [10], calculating various quanti-
ties such as the susceptibility and the energy as a function of the temperature T and the
electron-electron interaction U. As for the ground state of the Hubbard model, in [16]
the variational MC method was proposed. The ground-state properties of the simple-
cubic Hubbard model for a cluster of a 6 X 6 X 6 lattice were studied.

Inthelast2 years the electron—phonon interaction has been studied by many workers
[17-19]in order to explain the high transition temperatures in the new superconductors.
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The conventional electron—phonon coupling model is generally believed to be the origin
of superconductivity in simple and transition metals and their compounds [20-22]. An
exact solution of a modified Hubbard model for a tetrahedral cluster with periodic
boundary conditions has been presented in [23]. It includes a static electron-lattice
interaction in which the inter-site bond-hopping parameter is a function of the bond
electron occupation. The dynamics of the lattice are not included in this contribution,
but the dynamic electron-phonon interaction must play a role in the superconducting
properties. The electron—phonon coupling in the two-dimensional Hubbard model using
the MCc method has been investigated in [24]. The Green function method is used to
study the Hubbard model without electron—phonon interaction for example in [12] and
including the electron—phonon interaction in [25]. Exact formulae were obtained only
in the band (U < W) and atomic (U > W) limits [7]. These two approximate solutions
do not coincide at the intermediate values of the ratio U/W, where U and W are the
Coulomb interaction and the band width, respectively. In order to obtain an expression
for the energy spectrum and the damping for any values of U/W including the electron~
phonon interaction we have used a Green function method proposed in [26] for spin
operators.

2. Model and method

We consider the Hubbard Hamiltonian with electron—phonon interaction:
= E + u 2 z +
H= 2 eCisCho + 5 & Mioli-o + - W3 a5 ag
k.o li q.

- 2 A(qx)cz+qocko(aq/\+aiq/l) (1)

k.g.0.A

where ¢}, ¢, are the creation and annihilation electron operators on site i with spin
projection o = %1, n,, = cj;¢;, and g, is the band energy:

e, = —3Wlcos(k,a) + cos(k,a) + cos(k,a)].

W is the conduction band width. The final term in (1) represents interactions between

the electron and phonon systems with A(gA) = 4,/Qw,)"?, A, ~ q.

3. Static properties
The retarded Green function to be evaluated is defined as
Gko = <<Cka; clta»' (2)

For the approximate calculation of the Green function (2) we use a method proposed in
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[26] which is appropriate for spin problems. The equation of motion of G,(f) can be
written as

iGi (1) = 8(t) [k, ci 1) + [ex + Ru(D]G(0). (3)
R, (1) is the expression of the higher correlation functions:
R (6) = ([ja(®), ci D/ [ex(), cf ] Ji = [¢is Hint.

Taking into account that
! d
Ra(© = Ra(©) = | dr - [Rule = 7)
0 T

then equation (3) can be transformed to

iGy(6) = 8(t[ex- e 1) + [Ex — iv4(D]G(0) 4)
with
Ey =g+ Ry(0) = g +[Ju» ck DN[ckr i D &)
~ia(0) = =1 [ A0, J5 @D, ek () ©
0

The time-independent term (5) gives the electronic energy in the generalised Hartree~
Fock approximation, whereas the time-dependent term (6) includes the damping effects.
We obtain for the electron Green function

Gko(E) = 1/(E - Eko - Mko + iYka) (7)

where E;,, M,, and y,, are the electronic energy in the generalised Hartree~Fock
approximation, the energy shift and the electronic damping, respectively.

The equation of motion for the electron and phonon operators using the Hamiltonian
(1) are

.. 1
i = Excho + 7y 2 2 F a0 Sho Chrge ~ 37y 2 AR go(ag +a%g) (8)
q.
dig = wpay ~ 2 AKL)CCqtio )
q.0
0% = ~wuaty + 2 AKACHC ko (10)
q.0

From the last two equations, we obtain

2A(k)L) 2 ,

(ag) + @ty = Cqska)- (11)

The renormalised electronic energy in the generalised Hartree—-Fock approximation
from (5) with (8)—-(11) is

E =g+ C“qu a>+ °E<nqo> (12)

where (n,,) = 71, is the occupation number distribution:

ﬁqo = <C;ocqo> = 1/[exp(ﬂEko) + 1] (13)
Asfar asfirstly the static properties are considered, the effect of the electron—phonon
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Figure 1. Temperature dependence of the electron magnetisation p(7’) for U = 4 eV and
different W- and n-values: curve A, W=0.5eV. n=13;curve B, W=0.1eV, n=1.2;
curve C,W=0.05eV,n=1.1,curve D, W=0o0r2eV,n=l;curve E W=2.02eV.n =
0.99;curve F, W=2.1eV,n=0.95

interaction is thus a renormalisation of the electron—electron interaction constant
U= Uy

Ug=U=U+ AUy, AUy = imQA% /0 ,;) (14)
g—0

which now contains an indirect phonon-mediated part in addition to the direct part. This
renormalisation was not obtained earlier by other researchers using the Green function
method (see [3, 25], and references therein).

The conduction electron magnetisation p is given by

1
p= 27\]2 {C5Cyo) o= *1. (15)
q.0

p(T) was numerically calculated taking different model parameters. Figure 1 shows the
dependence of p(T') for constant U = 4 eV and for various band-width values W. For
U/2W > 1 (in many oxides and sulphides [27] of transition metals the Coulomb inter-
action is much greater than the band width (U > W)), p reaches its highest value at T =
0 (p = 0.5) and then decreases with T— T.. At T = T, p is zero. For U/2W = 1 (or =,
i.e. W = 0) the curve is not so steep and starts at p = 0.25 for T = 0. For U/2W < 1 (the
band limit U < W is a situation typical for a transition metal, e.g. U/2W = 0.14-0.16 for
Fe, Ni and Co), p is zero at T = 0, then increases with increasing temperature and at
T = T.iszero again (figure 1, curve E). For U/2W < 1 andn < 1 (e.g. figure 1, curve F,
where U/2W = 0.9 and n = 0.95) the starting value of p = Ois at T # 0, i.e. we obtain
two finite values of the critical temperature 7, in the Hubbard model, and therefore
magnetic order is present in the interval between these critical points, in agreement with
[28,29]. A similar effect was obtained for the ordering parameter in the s—f (or s—d)
model {30]. Recently, in [9] the magnetic and thermodynamic properties of the half-
filled Hubbard model on the simple-cubic lattice (without electron—phonon coupling)
were investigated. The sublattice magnetisation for various electron—electron constant
U-values is shown. It is in agreement with our discussion of p.
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The critical temperature T, increases strongly for U/2W < 2 whereas for U/2W > 2
it decreases but slowly (figure 1). In the intermediate regime the T.(U/2W) curve has a
maximum at U/2W = 2. A similar maximum was obtained in [9] at U/2W = 1.35 using
the single-site spin fluctuation theory and at U/2W = 1.5 using the Gutzwiller-type
variational approach. In [10] a maximum was obtained at U/2W = 1.7 using the MC
method.

The critical temperature T, increases with increasing Coulomb interaction constant
U or with increasing electron—phonon interaction constant A. As U (equation (14))
is equal to or larger than U, the electron—-phonon coupling in this approximation always
produces an increase in the transition temperature T,. Therefore this renormalisation of
the Coulomb interaction constant due to the electron—phonon interaction (14) obtained
using the Green function method may have a relation to the problem of the new
superconductors. We can consider equation (14) also from another viewpoint, namely
that an on-site Coulomb interaction U strongly enhances the electron—phonon coupling,
giving rise to superconductivity and to high 7 -values. This would be in agreement with
the conclusions in [31]. Calculations in this direction are in preparation and will be
published elsewhere.

Itis known that for a half-filled band (n = 1) the system described with the Hubbard
Hamiltonian is an antiferromagnetic insulator for any non-zero value of the Coulomb
repulsion U. In order to study the magnetic tendency of the system, we define the
nearest-neighbour spin correlation function C by

C=(nighir1o) = MigNit1-o)- (16)

Positive value of this correlation function indicates ferromagnetic tendency and negative
value indicates antiferromagnetictendency. To calculate C, we use the method proposed
in [26]. For T=0, U=7eV, W=3.5¢eV we obtain C=—0.0048 forn=1and C =
—0.0040 for n =0.8; for T=5K, C= —0.0052 (n=1) and C = —0.0043 (n = 0.8).
The negative values of C shows that for U > 0 the spin correlation between nearest
neighbours is antiferromagnetic. C increases with increasing U and n (n < 1). This is in
good agreement with the recently calculated correlation function for the one-dimen-
sional Hubbard model [32] and with the MC simulations [15] and the numerical diago-
nalisation [8] of the two-dimensional Hubbard model on a square lattice which also show
antiferromagnetic tendency. The fact that the model produces an antiferromagnetic
correlation between nearest neighbours for n # 1 and moderate U at finite temperatures
(T # 0) allows us to use the Hubbard model for description of the new superconductors
such as YBa,Cu;0- and La,_,(Sr, Ba),CuO,, which will be discussed elsewhere.

4. Dynamic properties
In order to obtain the mass operator and the damping of the electronic spectrum caused

by the electron—phonon interaction we consider the integral term in (6). For the operator
Jka» We Obtain

. U 1
Jko = [Cka» Him]— = W,‘Z c;’+qo’ck’a’ck+qa -3 7NEAA(qA)ck—qo(aq). + atql)~
q q.

In our calculations we use the approximate dynamics of ¢;,(f) = ¢, exp(—iE,.t) and
a(t) = ay; exp(—iwy,t), where E,, is from (12) and w, = vk. This assumption takes the
generalised Hartree~Fock approximation as a starting approximation.
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Figure 2. The dependence of the electronic damping y,, for k = 0, o = +1 on the ratio U/2W
for different 7- and W-values: curve A, T= 10K, W=0.5¢eV; curve B, T=20K, W=

2eVicurve C,T=30K, W=2eV;curve D, T=30K, W=5¢eV;curve E, T=30K, W=
10eV.

For the mass operator M,,, we obtain

U Ay (1= gy = Apsaes) F Aiaoflpsa-
Mg=—P{— p-0 99 ptqg—o go'tptq-o
¢ Aﬂz E,_,~-E —Eyoot Eyo

p—0C p+g—o

1+ 1y = Mt go Fae g + s
+ = ZA ( 2y z : ﬂ. (17)
“ Ep = Ek go ~ Wgi Eyo — Ek—qa +wg

Calculations yield the following expression for the electronic damping v,,:

aU? _ _ _ -
Yo = N2 E [np—a(l T Hggo T np+q—a) + nk—qonp+q—o]
q.p

X 6(Ep—q - Ep+q—a - Ek—qa +Ey)
7T - .
+ NEAAZ_]A[(l + mqi. - nk—qd)a(Eko - Ek—qa - wq/l)
g.

+ (ﬁk—qa + rﬁqk)a(Eko - Ek~q + wa)] (18)

where m,; = (a a,) = 1/[exp(w, /ks T) ~ 1] and 7, is from (13).

Now we wish to discuss the damping (equation (18)). y,, was numerically calculated
for different 7-, W- and U-values. Figure 2 and figure 3 show the dependence of y (k =
0,0=+1)on U/2Wfor W = constant and U = constant, respectively. y,, has a different
behaviour for U = constant or W = constant. The electronic damping y,, increases with
increasing T and increasing U/2Wfor W = constant (figure 2). For U = constant (ﬁgure
3), ¥4 increases with i increasing U/2W for T < T, at U/2W = 0.5 it has a maximum,
then it decreases reaching aminimum at U/2W = 1, and for U/2W > litincreases again.
Above T, (T > T.), this minimum (curves F and G) disappears. The damping increases
strongly for U/2W < 1 and then very slowly (it is nearly temperature independent) for
U/2W > 1. For U/2W > 1 the electronic damping is for all temperatures below and
above T, nearly independent of U/2W.
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Figure 3. The dependence of the electronic damp-
ing v, for k=0, o = +1 on the ratio U/2W for
U = 4 eVandfordifferent T-values: curve A, T =
1K;curve B, T=5K; curve C, T = 10K, curve
D, T=20K; curve E, T=30K; curve F, T =
40K; curve G, T =50 K.

Figure 4. Band occupation dependence of the
electronic damping y,(n) for T= 10K, U =4 eV
and W=2eV.

Finally we have calculated the dependence of y;,on the band occupationn = n, + n._
(figure 4). It decreases with increasing n. At n = 1 it decreases very strongly.

5. Conclusions

We have calculated the static and dynamic properties of the simple-cubic Hubbard
model including electron—-phonon interaction using a Green function method. They are
compared with the results obtained by other workers using the same or other methods.

The electron—electron interaction constant U/ is renormalised owing to the electron—
phonon interaction to U,y = U + 24}/w,. This renormalisation always produces an

increase in the transition temperature 7.
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_ The electron magnetisation p was numerically calculated. p(T) was discussed for
U = constant and for different band width values W (figure 1). For U/2W < landn < 1,
we obtain two critical points, i.e. magnetic order is present in the interval between these
critical points in agreement with {28, 29]. Recently [9] the sublattice magnetisation of
the half-filled Hubbard model on the simple-cubic lattice (without an electron—phonon
interaction) has been discussed for various electron—electron interaction constant U-
values. It is in agreement with our results. _

The T,(U/2W) curve has a maximum at U/2W = 2. A similar maximum was obtained
by other workers at U/2W = 1.35 (1.5) [9] and 1.7 [10].

The nearest-neighbour spin correlation function C was numerically calculated. The
obtained negative values in agreement with [15, 32] indicates antiferromagnetic tend-
ency.

The electronic damping y,, was calculated and discussed for different temperatures
T, band widths W, Coulomb interaction constants U and band occupation n-values. y,,
has a different behaviour for W = constant (figure 2) and U = constant (figure 3). It
decreases with increasing n. At n =1 it decreases very strongly (figure 4). To our
knowledge, it is the first time that a discussion of y(T, U/2W) and y(T, n) has been
presented.
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