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Abstract. A Green function technique is used to study the electron-phonon interaction in the 
Hubbard model. The Coulomb interaction constant is renormalised owing to the electron- 
phonon interaction; this renormalisation always produces an increase in the critical tem- 
perature T,. The dependence of the electronic damping on the ratio U/W (Coulomb inter- 
action per band width) and on the band occupation n for different temperatures is discussed. 
The damping y ( T ,  U/") shows different behaviours for U = constant and W = constant. 

1. Introduction 

The Hubbard [ l ]  model is widely used for an approximate description of correlation 
effects and their influence on the electrical and magnetic properties of narrow-band 
semiconductors and of some transition-metal compounds [2]. Recently the high-T, 
superconductors were examined using the Hubbard model [3-6]. The magnetic and 
thermodynamic properties (magnetic phase diagram, ground state energy, specific heat, 
magnetic susceptibility, etc) of Hubbard systems in one, two and three dimensions have 
been theoretically investigated by many researchers [7-121. The damping, however, has 
not been so intensively studied. This model, although simple in form, is not easy to 
handle mathematically. No exact solutions exist for the finite-temperature properties of 
the Hubbard model. Several approximation theories for the three-dimensional finite- 
temperature magnetism employing the functional-integral method within the adiabatic 
approximation [ 13,141 which interpolate between the weak- and strong-interaction 
limits have been proposed in the last few years. 

Quite recently, novel computational methods have been proposed to obtain the 
exact results for three-dimensional systems. In [15] a method was developed to treat 
exactly a fairly large cluster of the Hubbard model, combining the Monte Carlo (MC) 
method with a discrete Hubbard-Stratanovich transformation. The quantum MC simu- 
lation was performed for a 4 x 4 x 4 simple-cubic lattice [lo], calculating various quanti- 
ties such as the susceptibility and the energy as a function of the temperature T and the 
electron-electron interaction U .  As for the ground state of the Hubbard model, in [16] 
the variational MC method was proposed. The ground-state properties of the simple- 
cubic Hubbard model for a cluster of a 6 x 6 x 6 lattice were studied. 

In the last 2 years the electron-phonon interaction has been studied by many workers 
[ 17-19] in order to explain the high transition temperatures in the new superconductors. 
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The conventional electron-phonon coupling model is generally believed to be the origin 
of superconductivity in simple and transition metals and their compounds [20-221. An 
exact solution of a modified Hubbard model for a tetrahedral cluster with periodic 
boundary conditions has been presented in [23]. It includes a static electron-lattice 
interaction in which the inter-site bond-hopping parameter is a function of the bond 
electron occupation. The dynamics of the lattice are not included in this contribution, 
but the dynamic electron-phonon interaction must play a role in the superconducting 
properties. The electron-phonon coupling in the two-dimensional Hubbard model using 
the MC method has been investigated in [24]. The Green function method is used to 
study the Hubbard model without electron-phonon interaction for example in [12] and 
including the electron-phonon interaction in [25]. Exact formulae were obtained only 
in the band ( U  < W )  and atomic ( U  + W) limits [7].  These two approximate solutions 
do not coincide at the intermediate values of the ratio U/W, where U and Ware  the 
Coulomb interaction and the band width, respectively. In order to obtain an expression 
for the energy spectrum and the damping for any values of U/W including the electron- 
phonon interaction we have used a Green function method proposed in [26] for spin 
operators. 

2. Model and method 

We consider the Hubbard Hamiltonian with electron-phonon interaction: 

where eh ,  cio are the creation and annihilation electron operators on site i with spin 
projection (7 = t 1, niu = c&cio and &k is the band energy: 

W is the conduction band width. The final term in (1) represents interactions between 
the electron and phonon systems with A(qA) = Aq/(2uq1J”*, Aq - q. 

3. Static properties 

The retarded Green function to be evaluated is defined as 

c k o  = ((cko; clu??. (2) 

For the approximate calculation of the Green function (2) we use a method proposed in 
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[26] which is appropriate for spin problems. The equation of motion of Gk(t) can be 
written as 

iGk(t) = b(t)([ck, c l ] )  + [ & k  + Rk(t)]Ck(t)* (3) 
&(t) is the expression of the higher correlation functions: 

Rk(t) = ([jk(t)? c:])/([Ck(t)> c:l> j k  = lek, 
Taking into account that 

then equation (3) can be transformed to 

with 

The time-independent term ( 5 )  gives the electronic energy in the generalised Hartree- 
Fock approximation, whereas the time-dependent term (6) includes the damping effects. 

We obtain for the electron Green function 

Cku(E) = l/(E - - Mku + iYku) (7) 
where Eku, Mk, and Yko are the electronic energy in the generalised Hartree-Fock 
approximation, the energy shift and the electronic damping, respectively. 

The equation of motion for the electron and phonon operators using the Hamiltonian 
(1) are 

The renormalised electronic energy in the generalised Hartree-Fock approximation 
from ( 5 )  with (8)-(11) is 

where (nqu) = I?,, is the occupation number distribution: 

nqu (CiuCqu) = l/[exp(PEku) + 11. (13) 
As far as firstly the static properties are considered, the effect of the electron-phonon 
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Figure 1. Temperature dependence of the electron magnetisation p (  T )  for 6 = 4 eV and 
different W- and n-values: curve A. W = 0.5 eV. n = 1.3; curve B,  W = 0.1 eV,  n = 1.2; 
curve C, W = 0.05 eV,  n = 1.1; curve D. W = 0 or 2 eV. n = 1 ;  curve E. W = 2.02 eV. n = 
0.99; curve F. W = 2.1 eV,  n = 0.95 

interaction is thus a renormalisation of the electron-electron interaction constant 
U -  U,,,: 

Uef f  E U = U -I- A U&ph AUci-ph = lim(2A&/wqA) (14) 
q- I) 

which now contains an indirect phonon-mediated part in addition to the direct part. This 
renormalisation was not obtained earlier by other researchers using the Green function 
method (see [3,25], and references therein). 

The conduction electron magnetisation p is given by 

(15) 

p( T )  was numerically calculated taking different model parameters. Figure 1 shows the 
dependence of p(  T )  for constant 0 = 4 eV and for various band-width values W. For 
0/2W > 1 (in many oxides and sulphides [27] of transition metals the Coulomb inter- 
action is much greater than the band width (0 * W)), p reaches its highest value at T = 
0 ( p  = 0.5) and then decreases with T -  T,. At T = T,, p is zero. For 0/2W = 1 (or x ,  

i.e. W = 0) the curve is not so steep and starts at p = 0.25 for T = 0. For 0/2W < 1 (the 
band limit U Wis a situation typical for a transition metal, e.g. U/2W = 0.14-0.16 for 
Fe, Ni and CO), p is zero at T = 0, then increases with increasing temperature and at 
T = T, is zero again (figure 1, curve E). For U/2W < 1 and n < 1 (e.g. figure 1, curve F, 
where U/2W = 0.9 and n = 0.95) the starting value of p = 0 is at T # 0, i.e. we obtain 
two finite values of the critical temperature T, in the Hubbard model, and therefore 
magnetic order is present in the interval between these critical points, in agreement with 
[28,29]. A similar effect was obtained for the ordering parameter in the s-f (or s-d) 
model [30]. Recently, in [9] the magnetic and thermodynamic properties of the half- 
filled Hubbard model on the simple-cubic lattice (without electron-phonon coupling) 
were investigated. The sublattice magnetisation for various electron-electron constant 
U-values is shown. It is in agreement with our discussion of p. 
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The critical temperature T, increases strongly for 0/2W < 2 whereas for U/2W > 2 
it decreases but slowly (figure 1). In the intermediate regime the Tc(0/2W) curve has a 
maximum at 0/2W -- 2. A similar maximum was obtained in [9] at 0/2W = 1.35 using 
the single-site spin fluctuation theory and at U/2W = 1.5 using the Gutzwiller-type 
variational approach. In [lo] a maximum was obtained at 0/2W = 1.7 using the MC 
method. 

The critical temperature T, increases with increasing Coulomb interaction constant 
U or with increasing electron-phonon interaction constant A,,. As U,,, (equation (14)) 
is equal to or larger than U ,  the electron-phonon coupling in this approximation always 
produces an increase in the transition temperature T,. Therefore this renormalisation of 
the Coulomb interaction constant due to the electron-phonon interaction (14) obtained 
using the Green function method may have a relation to the problem of the new 
superconductors. We can consider equation (14) also from another viewpoint, namely 
that an on-site Coulomb interaction Ustrongly enhances the electron-phonon coupling, 
giving rise to superconductivity and to high Tc-values. This would be in agreement with 
the conclusions in [31]. Calculations in this direction are in preparation and will be 
published elsewhere. 

It is known that for a half-filled band (n  = 1) the system described with the Hubbard 
Hamiltonian is an antiferromagnetic insulator for any non-zero value of the Coulomb 
repulsion U. In order to study the magnetic tendency of the system, we define the 
nearest-neighbour spin correlation function C by 

C =  (nioni+lo) - ( n i o n i + l - o ) .  (16) 
Positive value of this correlation function indicates ferromagnetic tendency and negative 
value indicates antiferromagnetic tendency. To calculate C, we use the method proposed 
in [26]. For T = 0, U = 7 eV, W = 3.5 eV we obtain C = -0.0048 for n = 1 and C = 
-0.0040 for n = 0.8; for T = 5 K,  C = -0.0052 (n  = 1) and C = -0.0043 ( n  = 0.8). 
The negative values of C shows that for U > 0 the spin correlation between nearest 
neighbours is antiferromagnetic. C increases with increasing U and n (n  S 1). This is in 
good agreement with the recently calculated correlation function for the one-dimen- 
sional Hubbard model [32] and with the MC simulations [15] and the numerical diago- 
nalisation [8] of the two-dimensional Hubbard model on a square lattice which also show 
antiferromagnetic tendency. The fact that the model produces an antiferromagnetic 
correlation between nearest neighbours for n # 1 and moderate U at finite temperatures 
( T  # 0) allows us to use the Hubbard model for description of the new superconductors 
such as YBa2Cu307 and La2-,(Sr, Ba),CuO,, which will be discussed elsewhere. 

4. Dynamic properties 

In order to obtain the mass operator and the damping of the electronic spectrum caused 
by the electron-phonon interaction we consider the integral term in (6). For the operator 
jko, we obtain 

In our calculations we use the approximate dynamics of Cko(t) -- cko exp( -iEkot) and 
akA(t) -- ski, exp( -iWkAt), where Eko is from (12) and Wk = uk.  This assumption takes the 
generalised Hartree-Fock approximation as a starting approximation. 
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Figure 2. The dependence of the electronic damping ye, fork = 0, U = + 1 on the ratio G/2W 
for different T- and W-values: curve A ,  T = 10 K, W = 0.5 eV; curve B,  T = 20 K ,  W = 
2 eV; curve C, T =  30 K. W =  2 eV; curve D, T =  30 K, W = 5 eV;curveE,  T = 30 K ,  W = 
10 eV.  

For the mass operator Mko, we obtain 

Calculations yield the following expression for the electronic damping yko: 

Ek-qo  - 

+ ( I l k - q o  + mqA)6(Eko - E k - q  + w q i , ) l  (18) 
where mqj, = (u&uq i )  = l/[exp(w,;,/k,T) - 11 and &is from (13). 

Now we wish to discuss the  damping (equation (18)). Yko was numerically calculated 
for different T- ,  W- and U-values. Figure 2 and figure 3 show the dependence of y ( k  = 
0,o = +1) on  0 /2Wfor  W = constant and 6 =constant,  respectively. ykohasadifferent 
behaviour for 0 = constant o r  W = constant. The  electronic damping ykoincreases with 
increasing Tand  increasing U/2Wfor W = constant (figure 2). For 0 = constant (figure 
3), Yko increases with increasing 0 / 2 W  for T < T,, at U/2W = 0.5 it has a maximum, 
then it decreases reaching a minimum at 0 / 2  W = 1, and for U/2 W > 1 it increases again. 
Above T, ( T  > Tc) ,  this minimum (curves F and G) disappears. The  damping increases 
strongly for U/2W < 1 and then very slowly (it is nearly temperature independent) for 
U/2W > 1. For 0 / 2 W  9 1 the electronic damping is for all temperatures below and 
above T, nearly independent of 012 W. 
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Figure3. The dependence of the electro!ic damp- 
ipg ye, for k = 0, U = + 1 on the ratio U/2W for 
U = 4 eV and for different T-values: curve A. T = 

1 K;  curve B. T = 5 K;  curve C. T = 10 K ;  curve 
D, T = 20 K;  curve E ,  T = 30 K; curve F, T = 
40 K;  curve G,  T = 50 K.  

5.  Conclusions 

We have calculated the static and dynamic properties of the simple-cubic Hubbard 
model including electron-phonon interaction using a Green function method. They are 
compared with the results obtained by other workers using the same or  other methods. 

The electron-electron interaction constant U is renormalised owing to the electron- 
phonon interaction to UcfC = U + 2Af , /o , , .  This renormalisation always produces an 
increase in the transition temperature T,. 
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The electron magnetisation p was numerically calculated. p( 7') was discussed for 
0 = constant and for different band width values W (figure 1). For 0/2 W < 1 and n < 1, 
we obtain two critical points, i.e. magnetic order is present in the interval between these 
critical points in agreement with [28,29]. Recently [9] the sublattice magnetisation of 
the half-filled Hubbard model on the simple-cubic lattice (without an electron-phonon 
interaction) has been discussed for various electron-electron interaction constant U- 
values. It is in agreement with our results. 

The Tc( 0/2  W) curve has a maximum at 0 /2  W = 2. A similar maximum was obtained 
by other workers at 0/2W = 1.35 (1.5) [9] and 1.7 [lo]. 

The nearest-neighbour spin correlation function C was numerically calculated. The 
obtained negative values in agreement with [ 15,321 indicates antiferromagnetic tend- 
ency. 

The electronic damping yka was calculated and discussed for different temperatures 
T ,  band widths W, Coulomb interaction constants 0 and band occupation n-values. Y k o  

has a different behaviour for W = constant (figure 2) and 0 = constant (figure 3).  It 
decreases with increasing n. At n = 1 it decreases very strongly (figure 4). To our 
knowledge, it is the first time that a discussion of y( T ,  0/2W) and y( T ,  n) has been 
presented. 
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